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A Appendix

A.1 Discuss with LoRA and Naive Adapter

LoRA [5] and adapter [1, 4] aim to tuning the model to adapt the downstream
task with a few of parameters. LoRA [5] is composed of two different low-rank
matrices and is attached in parallel with the QKV attention. Adaptformer [1]
proposes that attaching the adapter in parallel with MLP leads to better perfor-
mance. However, they lack a viable mechanism (similar to key-query matching in
prompt learning) to address the issue of the absence of task identifiers during the
inference stage, cannot effectively resolve the RFCL problem. Compared with
classical adapter tuning and LoRA, C-ADA expands the trainable parameters in
CAL for every new task, which is parameter-extensible to solve continual tasks.
Joint training of old and new weights in CAL allows the knowledge of the new
task to evolve from the old task and reduces forgetting old knowledge. Besides,
the attached position of C-ADA is diverse, C-ADA can be attached to different
positions such as QKV attention, MLP, projection layer, etc.

A.2 Compare with Adapter in Continual Learning

There are some previous works [2, 10] introduce the adapter tuning into the
continual learning field. [2] maintains a memory buffer (rehearsal-based method)
and leverages a distillation mechanism to merge the adapters from different tasks
to keep the stored parameters unchanged. [10] adapts a single adapter to tuning
the model in the first task. For subsequent tasks, adapter and backbone are
frozen and only the classifier is trained. Differ from the previous works, C-ADA
is a parameter-extensible architecture to solve the RFCL task. Assigning a sub-
adapter to each task and using orthogonality to reduce conflicts leads to better
performance. We provide a more comprehensive result in table 1.
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Table 1: Results (%) on ImageNet-R. The results are all obtained by CODA [7],
APG [8] and ADAM [10] directly. AN is the final (last) accuracy over N tasks.

Methods P=5 P=10 P=20
AN (↑) Param (↓) AN (↑) Param (↓) AN (↑) Param (↓)

L2P 70.83 0.7/100.7 69.29 0.7/100.7 65.89 0.7/100.7
Deep L2P 73.93 9.6/109.6 71.66 9.6/109.6 68.42 9.6/109.6
DualPrompt 73.05 0.5/100.5 71.32 0.8/100.8 67.87 1.3/101.3
CODA-P-S 75.19 0.7/100.7 73.93 0.7/100.7 70.53 0.7/100.7
CODA-P 76.51 4.6/104.6 75.45 4.6/104.6 72.37 4.6/104.6
APG 72.36 − 73.27 − 71.22 −
ADAM 74.23 0.8/100.9 72.87 0.8/100.9 70.47 0.8/100.9

C-ADA(d=1) 76.23 0.3/100.3 75.06 0.3/100.3 71.92 0.3/100.3
C-ADA(d=3) 77.93 0.7/100.7 76.66 0.7/100.7 73.47 0.7/100.7
C-ADA(d=5) 78.53 1.1/101.1 76.91 1.1/101.1 73.72 1.1/101.1

A.3 Further Comparison with CODA

In reality, CODA [7] has a lightweight model CODA-P-S (0.7%) and a larger
model CODA-P (4.6%). For a more comprehensive comparison with CODA, we
illustrate the relationship between trainable parameters and accuracy (AN ) in
Figure 1. It is noteworthy that despite CODA’s attempt to enhance performance
through parameter expansion, it still falls significantly short of our C-ADA.
Remarkably, C-ADA can utilize only 1/10 of the parameters of CODA-P to
achieve superior performance by improving the model’s plasticity. Moreover,
the precision advantage of C-ADA over CODA-P expands with the increase of
parameter number.

This finding is crucial as it demonstrates a significant advantage of C-ADA
in terms of parameter efficiency. This is particularly important for resource-
constrained environments and applications, which require minimizing the num-
ber of parameters while maintaining high performance. Overall, our results
strongly suggest that C-ADA outperforms CODA in both parameter efficiency
and performance, providing valuable insights for future research in computer
vision.

A.4 Compared with the Generative Replay Methods

In the related work, we introduced a type of generative replay method [3, 6, 9].
They employ a GAN network to generate images of previous classes to mitigate
the forgetting of the model to solve the RFCL problem. We report the result in
table 2. Despite these methods being rehearsal-free, they typically underperform
when compared to the prompt learning method (Our C-ADA), experiencing a
decline in performance of approximately 30%.
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Fig. 1: The Comparison on Accuracy and Additional Parameter.

Table 2: The experiment is conducted on CIFAR-100 10 tasks. All results are obtained
from IRP. [9].

Methods ABD [6] R-DFCIL [3] IRP [9] C-ADA
Acc(%) 59.0 61.7 68.3 87.18

A.5 Extra Overhead

The primary objective of C-ADA is to solve RFCL tasks with a lightweight and
efficient framework. We present the additional overhead of ViT-B16 and C-ADA
in table 3. Remarkably, by adding very few parameters (0.7%) and training
complexity (0.05%), C-ADA exhibits outstanding competence in tackling the
CL problem, which validates the lightweight and efficiency of C-ADA in the
RFCL setting.

Table 3: The extra training and inference overhead on ImageNet-R 10 tasks.

Methods FLOPs Ratio Iteration Time Ratio #Param Ratio
ViT-B16 100.00% 100.00% 100.00%
C-ADA 100.05% 103.19% 100.70%

A.6 Sensitive Study of Hyperparameters

To search for the best choice of the hyperparameter, we conduct the experiments
on ImageNet-R 10 tasks with the different hyperparameter λ ∈ (0, 01, 1) and
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Fig. 2: The result of different hyperpa-
rameter λ ∈ (0, 01, 1) on ImageNet-R 10
tasks.

Fig. 3: The result of different hyperpa-
rameter δ ∈ (0, 8) on ImageNet-R 10
tasks.

Fig. 4: The visualization of features in different tasks.

δ ∈ (0, 8). We report the results in Figure 2 and Figure 3. We can see that we
selected the optimal values of the hyperparameter.

A.7 Visualization of Plasticity and Stability

To further demonstrate the effectiveness of C-ADA in acquiring new knowl-
edge (plasticity) and in preventing the forgetting of old knowledge (stability) to
solve the RFCL problem. we have visualized the t-SNE features of the output
from C-ADA during the process of incremental learning, as depicted in Figure
4. It is evident from the visualization that after learning a new task, the features
from the old and new classes are clustered together. This observation under-
scores the robustness of C-ADA maintaining a balance between plasticity and
stability, thereby effectively solving the RFCL problem.
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