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A Proof of SFTD basic properties

Proposition 3. (SFTD Stability) For any scalar functions f , f ′, g, g′ on a
grid, or on a graph vertex set:

dB(F-Cross-Barcodek(f, g),F-Cross-Barcodek(f ′, g′)) ≤
max(max

i
|f(i)− f ′(i)|,max

i
|g(i)− g′(i)|). (5)

Here dB denotes the bottleneck distance between persistence barcodes [13].

Proof. The proof is parallel in the simplicial and in the cubical cases. By con-
struction, F-Cross-Barcodek(f, g), F-Cross-Barcodek(f ′, g′) are the k−th persis-
tence barcodes of the lower-star filtrations induced by the functions f̃ , f̃ ′ on the
doubled graph G̃ from section 4.1. If max(maxi|f(i)−f ′(i)|,maxi|g(i)−g′(i)|) =
ε, then maxj∈Ṽ |f̃(j)−f̃ ′(j)| ≤ ε. Hence the filtration of each simplex in the lower
star filtration induced by f̃ on G̃ changes at most by ε under the perturbation
f̃ ′. It follows from e.g. the description of metamorphoses of canonical forms in [5]
that the birth or the death of each segment in the k−th barcode of G̃ changes
under such perturbation at most by ε.

Proposition 4. For any scalar functions f , f ′:

∥F-Cross-Barcodek(f, f ′)∥B ≤ max
i

|f(i)− f ′(i)|.

Proof. Apply equation (5) with g = g′ = f ′.

Let Cf≤α(G) denotes the simplicial (cubical) subcomplex of the simplicial
(cubical) complex associated with graph (lattice) G, containing all simplices
(cells) on which f ≤ α. The proof of propositon 1 follows from the exactness of
the sequence in equation 6 below.

Theorem 1. F-Cross-Barcodek(f, g) has the folowing properties:
– if f(i) = g(i) for any i ∈ V, then F-Cross-Barcodek(f, g) = ∅ for any k ≥ 0;
– if g(i) = minj∈V f(j) for any i, then for all k ≥ 0: F-Cross-Barcodek+1(f, g) =

Barcodek(f) the standard barcode of the lower star filtration induced by f on
graph G;

– for any value of threshold α, the following sequence of natural linear maps of
homology groups

r3i+3−−−→ Hi(C
f≤α(G)) r3i+2−−−→ Hi(C

min(f,g)≤α(G)) r3i+1−−−→
r3i+1−−−→ Hi(C

f̃≤α(G̃)) r3i−−→ Hi−1(C
f≤α(G)) r3i−1−−−→ . . .

. . .
r1−→ H0(C

f≤α(G)) r0−→ H0(C
min(f,g)≤α(G)) r−1−−→ H0(C

f̃≤α(G̃)) r−2−−→ 0 (6)

is exact, i.e. for any j the kernel of the map rj is the image of the map rj+1.
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Proof. The proof of the first two properties is immediate from the definiton of
F-Cross-Barcodek(f, g). The proof of the third property follows from the propo-
sition 5.

Proposition 5. The embeddings of graphs Gf≤α ⊆ Gmin(f,g)≤α ⊂ G̃ f̃≤α give
distinguished triangles, see [18], in the homotopy category of chain complexes:

Cf≤α(G) → Cmin(f,g)≤α(G) → C f̃≤α(G̃) → Cf≤α(G)[−1]. (7)

Proof. The proof is parallel to the proof of proposition A.3 from [7].

B Connection to Representation Topology Divergence

Representation Topology Divergence (RTD) [7] is a tool to compare two repre-
sentations R1, R2 of some set of objects V. RTD measures the dissimilarity in
multi-scale topology between two point clouds of equal size with a one-to-one
correspondence. Here we establish connections between SFTD and RTD and
highlight differences.

A unified view of SFTD and RTD involves two elements:

1. calculating a persistence barcode of a filtered simplicial complex derived from
the double graph G̃, see Fig. 2a;

2. usage of a specific filtration function T : C(G̃) → R.

Theoretically, the only restriction for T is that T (C1) ≤ T (C2) when C1 ⊆ C2.
For SFTD, the filtration function T is defined in vertices by a vertex function
f̃ (see Section 4) and extended to the rest of simplices by a formula T (C) =
maxv∈C f̃(v). While for RTD, T (C) conforms to the Vietoris-Rips filtration with
distance-like weights and is defined on vertices and edges as follows:

T (Ai) = T (Aj) = T (O) = 0

T (A′
i, A

′
j) = min(dist(R1(i), R1(j)), dist(R2(i), R2(j))),

T (Ai, A
′
j) = T (Ai, Aj) = dist(R1(i), R1(j)),

T (Ai, A
′
i) = T (O,Ai) = 0.

Here, for two objects i, j ∈ V we have their representations R1(i), R2(i) and a
distance function dist(R1(i), R2(i)). For the rest of the simplices, the filtration
function is extended by a formula T (C) = maxv1,v2∈C,(v1,v2)∈Ẽ T ((v1, v2)).

C Computational complexity of SFTD

The dominating step in SFTD computation is an evaluation of a persistence bar-
code. Generally, it is at worst cubic in the number of cubes/simplexes involved. In
practice, the computation is faster since the boundary matrix is typically sparse
for real datasets. SFTD for 5122 or 643 lattices can be calculated in seconds.
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D Details on the experiment with SHAPR

For experiments, we used the official repository9. We closely followed the official
pipeline and trained with the loss: LSHAPR + λ · SFTD, where λ was selected
from the set {1.0, 0.5, 0.25, 0.125, 0.06} by Dice error on cross-validation. For
baselines (SHAPR, SHAPR+W.D.) we used predictions from a zip-archive from
the official repository.

E Details on the experiment with 3D segmentation

For experiments, we used the repository 10 with the implementation of Swin UN-
ETR model pretrained on BraTS21 dataset of the MONAI Project framework
11. The ground truth and predicted segmentations have three channels corre-
sponding to NCR, ED, ET parts of tumor. In the experiments, we analyze and
visualize the segmentations corresponding to each channel separately. To visu-
alize the distinctive topological features provided by F-Cross-Barcode, we sep-
arately compute SFTD between ground truth and predicted segmentations and
vice versa. Topological features provided by SFTD between the ground truth and
prediction are depicted in the ground truth segmentation while SFTD between
the prediction and ground truth are depicted in the predicted segmentation.
In each example, the object’s voxels have values of 1 while the background’s
voxels have values of 0. In the visualizations of the persistence barcodes and
F-Cross-Barcodes, we omit the infinite half-line in H0 for the ease of perception.

F Additional results for 3D segmentation

In this section, we provide additional examples of topological errors between the
ground truth and predicted 3D segmentations, see Figures 12, 13. The predicted
segmentations in figures 12b, 13b have incorrect localization of clusters com-
pared to the ground truth in figures 12a, 13a. In both cases, this difference is
indistinguishable by persistence barcodes (see figures 12c, 12d, 13c, 13d) but is
revealed by the F-Cross-Barcodes (see figures 12e, 13e).

G Additional experiments for 2D segmentation

In 2D segmentation, optimizing loss functions based on pixel-overlap is often
insufficient to capture the correct topology of segmented objects. Betti matching
[32] is a topological metric and loss function for supervised image segmentation.
When used as a loss function, Betti matching improves topological performance
of segmentation models while preserving the volumetric quality.
9 https://github.com/marrlab/SHAPR_torch

10 https://github.com/Project- MONAI/research- contributions/tree/main/
SwinUNETR/BRATS21

11 https://github.com/Project-MONAI

https://github.com/marrlab/SHAPR_torch
https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BRATS21
https://github.com/Project-MONAI/research-contributions/tree/main/SwinUNETR/BRATS21
https://github.com/Project-MONAI
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(a) Ground truth (b) Prediction (c) Pers. barc. of ground truth

(d) Pers. barc. of prediction (e) F-Cross-Barcode

Fig. 12: Examples of topological errors in 3D segmentation. Predicted segmentation
(b) has incorrect localization of one cluster compared to the ground truth (a). This
difference is indistinguishable by persistence barcodes (c), (d) but is revealed by F-
Cross-Barcode (e).

(a) Ground truth (b) Prediction (c) Pers. barc. of ground truth

(d) Pers. barc. of prediction (e) F-Cross-Barcode

Fig. 13: Examples of topological errors in 3D segmentation. The ground truth seg-
mentation (a) has a tiny cluster that is incorrectly predicted by the model (b). This
difference is indistinguishable by persistence barcodes (c), (d) but is revealed by F-
Cross-Barcode (e).
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We strictly followed the experimental setup from [32] to compare SFTD with
Betti matching loss on CREMI [17] and colon cancer cell (Colon) [10] datasets.
We replaced the topological loss term in Betti matching with SFTD with p = 2
in up to 2 dimensions. Table 3 provides experimental results. Our method has
similar segmentation quality (Dice, clDice, accuracy) and lower topological errors
(τ err, βerr) - up to 35%. Also, evaluation of SFTD loss is ∼ 35 times faster than
Betti matching loss.

Table 3: Errors of 2D segmentation for CREMI and Colon datasets.

Method Dice ↑ clDice ↑ Acc. ↑ τerr ↓ βerr ↓

CREMI dataset [17]

Betti matching [32] 0.893 0.941 0.959 129.80 79.16
SFTD 0.885 0.941 0.955 126.48 62.64

Colon dataset [10]

Betti matching [32] 0.907 0.871 0.975 32.00 21.50
SFTD 0.901 0.889 0.971 21.50 14.00


