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Abstract. CLIP models have recently shown to exhibit Out of Distri-
bution (OoD) generalization capabilities. However, Compositional Out
of Distribution (C-OoD) generalization, which is a crucial aspect of a
model’s ability to understand unseen compositions of known concepts,
is relatively unexplored for the CLIP models. Our goal is to address this
problem and identify the factors that contribute to the C-OoD in CLIPs.
We noted that previous studies regarding compositional understanding
of CLIPs frequently fail to ensure that test samples are genuinely novel
relative to the CLIP training data. To this end, we carefully synthe-
sized a large and diverse dataset in the single object setting, comprising
attributes for objects that are highly unlikely to be encountered in the
combined training datasets of various CLIP models. This dataset enables
an authentic evaluation of C-OoD generalization. Our observations re-
veal varying levels of C-OoD generalization across different CLIP models.
We propose that the disentanglement of CLIP representations serves as
a critical indicator in this context. By utilizing our synthesized datasets
and other existing datasets, we assess various disentanglement metrics
of text and image representations. Our study reveals that the disentan-
glement of image and text representations, particularly with respect to
their compositional elements, plays a crucial role in improving the gen-
eralization of CLIP models in out-of-distribution settings. This finding
suggests promising opportunities for advancing out-of-distribution gen-
eralization in CLIPs. For more details and access to our dataset, please
visit https://github.com/abbasiReza/CLIP-COoD.

Keywords: Compositional Out-of-Distribution (C-OoD) Generalization
· CLIP · Disentanglement

1 Introduction

Out-of-Distribution (OoD) generalization which is the ability of a model to gen-
eralize to the data distributions differing from the training distribution is very
important for most learning models [1]. In recent years, several studies sug-
gested that some Vision-Language Models (VLMs) such as the CLIPs [2], ex-
hibit OoD generalization [2, 3]. Specifically, several studies reported that CLIP

https://github.com/abbasiReza/CLIP-COoD
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Fig. 1: Comparing zero-shot compositional out-of-distribution (C-OoD) generalization
across diverse CLIP models and training sets. In-distribution (ID) performance is eval-
uated on the ImageNet validation set with object name labels, while the C-OoD gen-
eralization is assessed on our designed compositional dataset using attribute-object
pair labels. Noticeably, CLIP models trained on the Common Pool dataset exhibit
a steeper accuracy slope when transitioning from the ID to the OoD compositional
setting compared to models trained on other datasets like WebLI. CLIPs trained on
the LAION and DataComp datasets also show significantly higher C-OoD across ID
accuracy. Despite improved in-distribution accuracy, models pretrained on WebLI do
not demonstrate substantial gains in generalizing to the novel compositional out-of-
distribution test cases.

models demonstrate enhanced zero- and few-shot accuracies on parallel versions
of ImageNet, comprising images with various style shifts with respect to the
original ImageNet [3, 4].

In particular, Compositional OoD (C-OoD) generalization is a main branch
of the OoD generalization, focusing specifically on the ability of models to gen-
eralize to unseen combinations of known concepts or entities. Essentially, com-
positional generalization relates to human-like inductive biases that leads to
more efficient learning via composing seen concepts [5]. Recently, some stud-
ies have worked on evaluating or improving compositional generalization in the
NLP tasks [5–7]. However, C-OoD generalization for vision tasks is less explored
since the unseen compositions of concepts can not be easily created visually for
investigation.

In the recent years, evaluating the ability of VLMs in encoding objects, at-
tributes, and their relations has recently received attention [8, 9]. Some bench-
marks such as VL-Checklist [10], Winoground [11], and Attribute-Relation-Order
(ARO) [8] have been introduced to assess the image-text matching ability of
VLMs in compositional setups more exactly. VL-Checklist provides a benchmark
to evaluate VLMs capabilities in three categories of objects, attributes, and re-
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Fig. 2: Examples of images from our generated dataset. This dataset is created by
combining attributes and objects that do not appear in the CLIP training sets, specif-
ically designed for benchmarking compositional OoD generalization purposes.

lations. ARO showcases that the reordering of words in the text does not highly
impact on the similarity of the text with the corresponding image. Some of these
studies [8, 11] discussed shortcommings of VLMs in encoding the compositional
relationships between objects and attributes and [9] showed that VLMs can com-
pose concepts in a single-object setting including single attribute-object compo-
sitions. Nonetheless, most of the work around compositional reasoning [12–15]
were more concerned about compositional understanding of the inputs, and less
attention has been paid to the OoD generalization in which the generalization
ability are evaluated against truly novel compositions with respect to the train-
ing set. In a nutshell, the literature suggests that compositional understanding
in VLMs might be more feasible in the single-object setups. However, until now
the C-OoD capability of CLIPs is unexplored. This makes us ask the question:

Do CLIPs really have nontrivial C-OoD generalization in the single-object
setting? and where does this ability stem from in such models?

We propose a new benchmark to evaluate the C-OoD performance of CLIP
models. Our approach involves generating a dataset, called ImageNet-AO (At-
tribute Object), distinct from the CLIPs training data. We gather comprehensive
lists of objects and attributes, then generate images by combining these objects
and attributes using a text-to-image model. The generated images undergo sev-
eral filtering processes to ensure they are aligned with their intended and speci-
fied object-attribute description, and are novel compared to the combined CLIP
training datasets both in the text and image domains. We then evaluate different
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CLIP models on our OoD dataset to classify an input image into its composition
constituents. Fig. Fig. 1 gives an overview of this result, in which certain CLIPs,
such as the ones trained on the LAION and DataComp, yielded strong C-OoD
performance.

Finally, we analyze the factors that contribute to better performance in our
benchmark. We found that the CLIPs that show higher C-OoD generalization
typically exhibit strong disentangled text representations with respect to the
composition constituents. We backed this observation by assessing numerous
disentanglement metrics, and the intrinsic dimensionality of the composition
text embeddings. We found that CLIPs with strong C-OoD accuracy also enjoy
a more disentangled image representation, albeit at a lower level compared to
that of the text embedding. Based on these results, we hypothesize that the
inherent disentanglement of the text is induced from the text representation
space to that of the images through contrastive learning. We elaborate on this
hypothesis in Sec. 4. Consistently, various disentanglement metrics of the text
and image representations are observed to be highly correlated in CLIPs. We
also repeat all these experiments in datasets that were previously designed for
evaluating disentanglement, and contain factors at a more fine-grained level, and
note that all these observations hold.

Our contributions are summarized as follows:

– Designing an image test dataset of attribute-object pairs that are unseen in
common CLIP training datasets.

– Benchmarking the compositional generalization of various CLIPs in the care-
fully designed and controlled setting.

– Discovering that the CLIP representation space is decomposable into embed-
ding of concepts (e.g., objects and attributes) especially for the embeddings
obtained by the text encoder, and suggesting that it is the source of compo-
sitional generalization.

– Demonstrating a strong connection between CLIPs text/image disentangle-
ments and better C-OoD generalization through different disentanglement
metrics, on both our ImageNet-AO datasets and exisiting datasets designed
previously for disentanglement evaluation.

2 Methodology

In this section, we explain how we conducted our study step-by-step. We first de-
scribe how we created our challenging benchmark dataset, ImageNet-AO, which
involves finding new combinations and making images with text-to-image mod-
els (Sec. 2.1). Examples of images in ImageNet-AO are shown in Fig. 2. Then,
we dive into how we test CLIP models in the zero-shot setting, and the chosen
criteria to evaluate the models (Sec. 2.2).

2.1 ImageNet-AO Dataset Design

To rigorously evaluate the compositional generalization capabilities of vision-
language models, we devised an innovative dataset featuring compositions that
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are out-of-distribution with respect to the training datasets of these models.
Our dataset is crafted to include rare and unique compositions, thus ensuring
it presents novel challenges to the VLMs under study. The dataset construction
process is meticulously designed and involves several key steps, as depicted in
Fig. 3 and detailed below:

Selection of Objects (Nouns) Our initial step involved curating objects by
extracting class names from the ImageNet dataset. This choice facilitates a di-
rect comparison between the performance of models on our dataset and their
performance on the well-established ImageNet validation set. By selecting a di-
verse array of class names, we aim to increase the complexity and richness of the
generated compositional images.

Selection of Attributes (Adjectives) We then selected 140 adjectives from
the Visual Attributes Words (VAW) dataset [16]. These adjectives span various
categories, including color, material, and texture, allowing us to create a wide
range of descriptive combinations for image generation. A complete list of the
140 adjectives used from the Visual Attributes Words (VAW) dataset is provided
in Appendix .

Image Generation with Attribute-Object Prompts Utilizing the SD-XL
Turbo, one of the most advanced and efficient text-to-image models available, we
generated images based on combinations of the selected attributes and objects.
By pairing 140 adjectives with 1,000 nouns, we created 140,000 unique prompts,
which were then used to produce corresponding images, enriching our dataset
with a vast array of compositional variety.

Filtering Process To guarantee the integrity and the intended OoD character-
istics of our dataset, we implemented a meticulous three-step filtering process.
This approach ensures that our dataset not only accurately represents the spec-
ified attribute-object combinations but also stands apart from existing datasets
in terms of composition and novelty. The steps are as follows:

Step 1 - Initial Validation: Each generated image was subjected to an
initial evaluation to verify its accuracy in depicting the intended attribute-object
pair, exclusively through human assessment. During this process, evaluators were
tasked with answering two critical questions: "Is this an image of [object]?" and
"Does it exhibit [attribute]?" If at least one of these questions was answered
with a "no," the image was removed from consideration. This step ensured that
only images accurately representing the specified characteristics were retained
for further processing.

Step 2 - Exclusion of Known Combinations: To ensure the exclusiv-
ity of our dataset, we conducted a comprehensive search across several datasets
(LAION, CommonPool, YFCC, and CC) to identify and eliminate any attribute-
object combinations already present. This was achieved through a relaxed match-
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Fig. 3: Dataset Design Stages: The data design process involves a generation phase
that makes the initial dataset from the whole set of the object and attribute compo-
sitions, and three distinct filtration steps. In the first filtration step, images where the
target attribute or object lacks clear visibility are eliminated. In the second filtration
step, the process removes images whose captions are already present in public datasets
specifically curated for CLIP training. In the third filtration step, the faiss k-nearest
neighbors algorithm is employed to identify and filter out images exhibiting similarities.

ing criterion, where combinations were removed if both the object and attribute
appeared in a caption of an image, even if not in direct association.

Step 3 - Verification of OoD Status: The final step in our filtering process
was to ensure the OoD nature of our dataset. We used the Faiss library [17] for
a K-nearest neighbors search to compare our generated images against those in
the LAION, CommonPool, YFCC, and CC datasets. Images were considered
unique and retained in our dataset if no closely matching analogs were found,
based on human evaluation. This rigorous approach ensured the novelty and
uniqueness of our dataset by excluding combinations that had similar matches
in the referenced datasets.

The dataset design process culminates in around 21,000 novel combinations
of attributes and objects. The final generated dataset, after passing through
the filtering process, comprises approximately 60,000 images representing 21,000
unique attribute-object combinations. Detailed properties and statistics about
the dataset, including the list of attributes and objects used, can be found in the
appendix. Additionally, another filtered version of the dataset is also available
in the appendix.

2.2 Model/Data Zoo and Evaluation Criteria

In our experiments, we evaluate CLIP models trained on a diverse selection of
datasets, including OpenAI’s private dataset, LAION, YFCC15m, CC12m, Dat-
aComp, DFN-5B, WebLI, and CommonCrawl. These models leverage a variety
of backbone image encoders such as ResNet50, ResNet101, ViT-B-32, ViT-B-16,
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ViT-L-14, ViT-H-14, ViT-g-14, and ViT-BigG-14. Our evaluation also extends
to new CLIP variations, including EVA CLIP, SigLIP, and CLIPA, allowing for
a comprehensive assessment of their performance and generalization capabilities
across different tasks and datasets.

3 Comparison of CLIP Models on ImageNet-AO

To evaluate the CLIP model performance in the classification tasks, we adopted
the evaluation method developed by [18], similar to the zero-shot evaluation
approach described in [2]. Our evaluation involves providing the model with the
actual images and various captions, obtaining embeddings for both the images
and texts, and calculating their cosine similarities. This allows us to estimate
the relevance of the captions to the image content, similar to a classification
task. Given that our dataset only provided class labels (attribute-object pairs)
for images, we expanded on this by creating 80 captions per class using various
templates. This approach, inspired by the methodology described in [2], allows
for a more comprehensive representation of each class. We generated embeddings
for these captions and averaged them to produce a final embedding for each class,
which was then used in our zero-shot evaluation. For the test sets, all 1000 classes
of ImageNet were used as the in-distribution set and expanded the number of
classes to approximately 21000 for the OoD set. The CLIP evaluations are shown
in Fig. 1.

While our results generally showed that models trained on larger datasets
exhibited improved accuracy in both in-distribution and out-of-distribution set-
tings, supporting the notion that larger training datasets can enhance com-
positional out-of-distribution generalization performance, it is crucial to note
that dataset size alone does not directly predict model strength. The perfor-
mance of models varied significantly with not only the dataset size but also
the quality and curation of the data. For instance, CLIP trained on the un-
filtered CommonPool-XL dataset performed weaker than CLIP trained on the
CommonPool-XL dataset filtered using ClipScore, despite the unfiltered dataset
containing an additional 7 billion images. This further reinforces that simply in-
creasing dataset size does not necessarily lead to improved model performance,
and carefully curating and filtering the data can be more effective than merely
accumulating vast amounts of unfiltered data.

Additionally, as evident from Fig. 1, models with different configurations
trained on various datasets exhibited different training slope trajectories. The
models trained on CommonPool-XL with different data filtering techniques demon-
strated particularly steep performance trends, suggesting that the combination
of a large dataset and effective data curation can yield significant performance
gains.

Interestingly, the SigLip (denoted as WebLI) models presented a unique case
with a somewhat negative slope, indicating that while enhancements to the back-
bone architecture improve in-distribution data performance, they may adversely
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affect out-of-distribution data performance. This highlights the nuanced relation-
ship between architectural improvements and model generalization capabilities.

This extensive analysis, which encompasses the performance of diverse CLIP
models across a broad spectrum of datasets, underscores the complexity of fac-
tors influencing model behavior and the pivotal role of dataset characteristics
in achieving optimal performance in both in- and out-of-distribution settings.
Further details on the performance evaluation of various CLIP models can be
found in Sec. 7.4 of the Appendix.

4 Why CLIP has Compositional Generalization?

Having established the superior C-OoD performance of certain CLIPs, we next
try to investigate the reasons behind these observations. It has been widely
known that disentangled representations make meaningful construction of known
concept mixtures in the embedding space feasible, hence resulting in better C-
OoD generalization [19–21]. Here, disentanglement means assignment of separate
and independent embedding dimensions to different factors of variations, which
in this case are the objects and attributes.

We hypothesize that the discrete nature of the language, and large and diverse
training datasets promote a more decomposable text representation. On the
other hand, alignment of the text and image embeddings through contrastive
learning in CLIPs induces this decomposability in the image domain. Based on
these insights, we posit that representation decomposability is the key to the
CLIP unseen compositional generalization. This claim is supported by two main
arguments:

– Decomposability of the CLIP text embedding, measured through a compre-
hensive set of metrics, is correlated to the CLIP C-OoD generalization (Fig.
4, bottom row).

– Text representation disentanglement is induced in the image encoding, due to
implicit maximization of the mutual information of text and image represen-
tations through contrastive learning. We elaborate on this claim empirically
(Fig. 4, top row), and theoretically in what follows.

Why disentanglement is induced from one view to another in the con-
trastive learning? We next try to give some theoretical insight on why and
how the disentanglement emerges in the CLIP vision encoder. Several studies
have shown the relation between minimizing the contrastive loss and maximiz-
ing the mutual information [22]. Therefore, the CLIP training implicitly max-
imizes the mutual information between text and image embeddings. We claim
that disentanglement in the text representation, which was evidenced previously,
may encourage disentanglement in the image encoding. To see this, let y1 and
y2 be the text embeddings for the objects and attributes, respectively. Let x1

and x2 be the corresponding image embeddings. Assuming a decomposable text
embedding means y1 ⊥ y2, i.e. p(y1, y2) = p(y1)p(y2). Now by minimizing the
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contrastive loss, the mutual information I(x1, x2; y1, y2) is maximized. By letting
x = (x1, x2), and y = (y1, y2), we have:

I(x1, x2; y1, y2) = DKL(p(x, y) ∥ p(x)p(y))

= DKL(p(x1|x2, y)p(x2|y)p(y) ∥ p(x1|x2)p(x2)p(y))

= Ex1,x2,y[log(p(x1|x2, y)/p(x1|x2))] + Ex2,y[log(p(x2|y)/p(x2))]

= Ex2,y[DKL(p(x1|x2, y) ∥ p(x1|x2))] + Ey[DKL(p(x2|y) ∥ p(x2))]

Maximization of the latter term makes x2 and y dependent random variables,
otherwise if x2 ⊥ y, the expected KL divergence would be minimum (or zero),
which is against maximizing the mutual information. Note that however, x2 does
not ideally depend on both y1 and y2, otherwise the two distributions in the KL
divergence in the first term become similar, which is also against maximizing
the mutual information. Putting these together, x2 mostly depends on y2 if
the mutual information is maximized. Using a symmetric argument, x1 mostly
depends on y1. Finally, because y1 ⊥ y2, we conclude that x1 and x2 tend to
become independent. Therefore, maximizing I(x1, x2; y1, y2) decomposes x if y
is already decomposed.

5 Decomposable representation of CLIP Models

In this section, our primary objective is to leverage the generated dataset and
other synthtic datasets to analyze our hypotheses, focusing on the decompos-
able CLIP representation space and its impact on the compositional OoD per-
formance.

5.1 Attribute-Object Decomposition of Representation Space

In this section, we show that the representation space of the CLIP models on the
proposed dataset can be decomposable into the representations of the objects
and the attributes.

Disentanglement of Attributes and Objects Here, we aim to assess the
level of embeddings disentanglement in various CLIPs on ImageNet-AO. We
utilize some common disentanglement metrics, namely the Z-Diff Score [23],
DCI [24] and Explicitness score [25] to quantitatively evaluate the embeddings.
These metrics are typically employed for supervised disentanglement assessment
and require access to the latent factors of data. Since we have a compositional
text specifying the attribute and the object for each image, we can consider two
super latent factors corresponding to attributes and objects respectively. More
details about these disentanglement metrics and their formulas can be found in
Appendix 7.5 .

We calculate these metrics for each CLIP model on our ImageNet-AO dataset.
Subsequently, in Fig. 4 (bottom), we visualize the relationship between the C-
OoD accuracy and the disentanglement metrics. Each point in the plot represents
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Fig. 4: Top: Representation disentanglments are correlated in text and image embed-
dings of CLIPs. Bottom: Disentanglment metrics vs. C-OoD Accuracy.

a CLIP model, with the x-axis denoting the C-OoD accuracy and the y-axis
representing the disentanglement metric. As observed in bottom row of the plot,
there is a discernible pattern where models with higher C-OoD accuracy tend
to exhibit more disentangled text and image representations. This empirical
observation aligns with our initial hypothesis. Notably, the disentanglement in
the text embedding (blue points), is more pronounced compared to the image
embeddings (green points). Additionally, in 4 (top), we show the correlation
between the image encoder and the text encoder for different disentanglement
metrics. This figure demonstrates that by increasing the disentanglement in the
text encoder, the disentanglement in the image encoder also increases, indicating
a correlation between them.

Intrinsic Dimensionality of the Composition Representations The pre-
viously reported metrics of disentanglement focus on the correspondence between
embedding dimensions and latent factors, and hence often require training an
auxiliary classifier, in which a given representation is classified into levels of any
latent factor. One could alternatively take a training-free approach through mea-
suring relative intrinsic dimensionality of the composition patterns. This could
be achieved by measuring the soft rank of the embeddings of attribute-object
pairs. The soft rank is defined by the number of singular values of a given ma-
trix that are greater than a pre-specified positive threshold. The soft rank is
then normalized and made comparable across CLIPs by being divided to the
number of embedding dimensions. This way the soft rank measures the relative
intrinsic dimensionality of the embedding space. If the representation is entirely
disentangled, huge combinations of attribute-objects would only result in a small
intrinsic dimensionality, i.e. sum of the intrinsic dimensionalities of object and
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Fig. 5: The decrease in the soft rank of attribute-object representations relative to
the embedding size correlates with improved C-OoD accuracy. This indicates that
decomposing representations of attributes and objects results in a low dimensional
representation of CLIPs that exhibits robust C-OoD performance. This highlights the
representation disentanglement in CLIPs with strong C-OoD generalization.
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Fig. 6: The performance of various CLIP models in the task of image±text retrieval.
A model’s superior performance in this task indicates that its representation is more
decomposable.

attribute spaces. Otherwise, each attribute-object embedding would appear to be
novel with respect to other composition embeddings, resulting in a near full-rank
space.

For this experiment, we use ImageNet-AO, which provides around 21,000
unique combinations of attributes and objects. We utilize their image embed-
dings, obtained from the CLIP image encoder, and caption embeddings, obtained
from the CLIP text encoder, to calculate the soft rank with a threshold of 0.1.
Fig. 5 shows that the intrinsic dimensionality is decreasing as the C-OoD accu-
racy increases, in both text and image domains.
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Image retrieval with image±text queries Inspired by the work of [26],
we designed an experiment to evaluate the compositional nature of embeddings
learned by the CLIP models. Our primary objective is to assess the representa-
tion disentanglement of the CLIP models trained on diverse datasets. To accom-
plish this goal, we devised a test in which we input an image from our dataset
into the image encoder of the model, and obtain its corresponding embedding.
Next, we employed the text encoder of the model to compute the embedding of
an adjective, ensuring that the adjective differed from those associated with the
current image. These two embeddings were then combined through summation
and used as a query in a process similar to the image retrieval. We then show the
image closest to the generated query embedding. A total of 200 random images
were used to conduct this test for each model.

In order to evaluate the accuracy of the models predictions, we consider the
image that is most similar to the query as the correct prediction if it possess both
the intended object and adjective. A higher level of accuracy in the image re-
trieval task indicates that the model embeddings are more disentangled. Model
evaluations are demonstrated in Fig. 6. The Recall@1 performance of various
models aligns with our expectations. Specifically, we anticipated that models
excelling in C-OoD tasks would also exhibit more disentangled representations.
We previously observed in Fig. 1 that CLIPs associated with LAION and Data-
Comp datasets stand out as having highest C-OoD accuracies. These two CLIPs
also performed best in this experiment.

5.2 Disentanglement of Fine-Grained Factors

In the field of Disentanglement Representation Learning, the concept of disen-
tanglement is explored from two distinct perspectives: fine-grained factors at the
dimension level and coarse-grained factors at the vector level [27]. Our initial in-
vestigation into CLIP models, utilizing our curated dataset, provided insights
into coarse-grained disentanglement (e.g. separating attributes and objects as
two factors) and revealed multifaceted evaluation metrics. Moving forward, we
aim to delve into the realm of fine-grained disentanglement at the dimension
level. However, our current dataset poses inherent limitations in segregating fac-
tors at such a granular level. Consequently, to facilitate a comprehensive evalu-
ation of fine-grained disentanglement, it becomes necessary to adopt specialized
datasets designed explicitly for disentanglement studies within this domain.

For our in-depth analysis of the fine-grained disentanglement, we selected
two distinguished datasets: Sprites [28], Shapes3D [29] as they are specifically
designed for disentanglement studies in image-centric models. Examples from
these datasets can be seen in Fig. 7.

Since our focus extends beyond image-centric models to evaluate disentangle-
ment in both the text encoder and image encoder components of CLIP models,
we generated captions for each image based on the vector of factors associated
with that image. This approach enables us to assess the disentanglement capa-
bilities of CLIP models in both the visual and textual domains.
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a) Sprites b) Shape3D

Fig. 7: Disentanglement datasets. a: Sprites dataset, consist of 6 factor and 54,000
images b: Shape3D, consist of 5 factor and 32,000 images
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Fig. 8: Disentanglment metrics vs. C-OoD Accuracy on Sprites and Shapes3D dataset.

Figure 8 shows the text encoder exhibits higher disentanglement than the
image encoder. As models improve on the C-OoD task, disentanglement tends
to increase for both encoders.

More Analysis on decomposability of the representation space Using
the Shapes 3D, we conducted two experiments to investigate the representation
of factors more accurately.

In first experiment, we employ the 480,000 images of Shapes 3D dataset,
each with specific latent factors such as floor hue, wall hue, object hue, scale,
shape and orientation. We train a classifier to calculate the Z-Diff Score and
utilize it to determine which dimensions are most critical for each latent factor.
In the process of calculating the Z-Diff score, we train a classifier that can de-
termine, for a group of data points that have a fixed specific value for one of
the latent factors, what that factor is. By using this classifier, we can identify
which dimensions are more important for determining each factor. Subsequently,
we extract the top 100 important dimensions for each factor and calculate how
many dimensions are common across factors. Our results, presented in Table
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1, demonstrate that models with higher C-OoD accuracy tend to exhibit fewer
common dimensions across factors. This finding suggests that improved C-OoD
generalization is associated with more disentangled representations.

In the second experiment, we looked at the impact of disentanglement on
zero-shot object color manipulation using two identical images except for the ob-
ject color. We calculated the embeddings using the CLIP and used the classifier
of the first experiment to identify the most important dimensions for detecting
object color. By switching the top k dimensions between the two image embed-
dings, we tested the models’ ability to detect captions matching the switched
new color. The results are summarized in Table 1 showing that models with
higher C-OoD accuracy require fewer dimension switches to achieve the color
change, indicating that disentangled representations enable more effective zero-
shot modifications.

Table 1: Number of common dimensions across factors and switching dimensions for
color manipulation in the Shapes 3D dataset

Dataset Architecture C-OoD Acc. # Com. Dims # Sw. Dims

LAION ViT-L/14 64.61% 2 40
LAION ViT-B/16 61.55% 5 60
LAION ViT-B/32 61.05% 7 90
OpenAI ViT-L/14 52.28% 3 5
OpenAI ViT-B/16 49.22% 4 10
OpenAI ViT-B/32 47.07% 6 30
CC RN50 26.64% 15 200
YFCC RN50 12.23% 21 250

6 Conclusion

This study examines how well CLIPs can generalize to new compositions of
objects and attributes. We created an authentic benchmark of compositional
images that are truly novel with respect to the CLIP training sets, and found
that CLIPs ability to decompose the text/images representation space (into the
embedding of concepts) is crucial for the compositional generalization. We have
assessed the decomposability through the lens of several well-known metrics, as
well the composition representation intrinsic dimensionality. These experiments
were conducted on a wide range of datasets, from our attribute-object dataset
to the ones previously designed specifically to evaluate disentanglement. We also
covered a wide variety of problem setups in this direction, ranging from factor
classification, and image±text retrieval, to factor manipulation. All mentioned
assessments consistently demonstrate a strong connection between text and im-
age representation disentanglement and C-OoD generalization.
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