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1 Datasets
1.1 CARLA Datasets

A complete figure of the actor and ego configurations across scenes and the
progression of timestamps for the Single-Scene Approaching Intersection, Multi-
Scene Approaching Intersection, and the Multi-Scene Two Lane Merge is visu-
alized in Fig. [6]

1.2 Hand-manipulation Dataset

We generate an additional hand-manipulation dataset involving a robotic ma-
nipulator engaged in probabilistic reaching tasks utilizing VUER fig(5). The
experimental setup consists of two target objects placed on a table in a room: a
Rubik’s cube and a green tennis ball. The robotic hand’s configurations during
the reaching and grasping phases for both objects are illustrated in Fig. [6]

2 Implementation Details

2.1 Pose-Conditional VAE

Architecture: We implement PC-VAE on top of a standard PyTorch VAE frame-
work. The encoder with convolutional layers is replaced with a single convolu-
tional layer and a Vision Transformer (ViT) Large 16 (Il) pre-trained on Ima-
geNet (4). We modify fully connected layers to project ViT output of size 1000
to mean and variances with size of the latent dimension, 8. During training, the
data loader returns the pose of the camera angle represented by an integer value.
This value is one-hot encoded and concatenated to the re-parameterized encoder
outputs, before being passed to the decoder. The decoder input size is increased
to add the number of poses to accommodate the additional pose information.
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Pose ¢ Inputs PC-VAE Decoded Images From Set of New Pose ¢

Fig.1: PC-VAE encoder inputs, ground truth timestamps, and reconstruc-
tions for a CARLA dataset and Hand-manipulation dataset. The encoder
input, If, among the other ground truth images I. viewed from camera pose c at dif-
ferent timestamps, is reconstructed across a new set of poses ¢’ respecting timestamp
t, generating I%,. This is a full grid of the reconstructions.
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PC-VAE Hyperparameters

Latent Size 8
LR 0.004
KLD Weight Start 0.000001
KLD Weight End 0.00001 — 0.00004*
KLD Increment Start 50 epochs
KLD Increment End 80 epochs

Table 1: PC-VAE experimental setup and hyperparameters. The main hyper-
parameters in PC-VAE training on the three datasets are latent size, LR, and KLD
weight. For KLD scheduling, the KLD increment start refers to the number of epochs at
which the KLD weight begins to increase from the initial KLD weight. KLD increment
end is the number of epochs at which the KLD weight stops increasing at the maximum
KLD weight. The asterisk (*) marks the hyperparameter that is dataset-dependent.

Optimization: We utilize a single RTX 3090 graphics card for all our experiments.
The PC-VAE model takes approximately 22 hours to converge using this GPU.
During this phase, we tune various hyperparameters including the latent size,
learning rate and KL divergence loss weight to establish optimal training tailored
to our model (see Tab. . In order to optimize for the varied actor configurations
and scenarios generated within the CARLA (2) simulator, we slightly adjust
hyperparameters differently for each dataset.

The learning rate (LR) and KL divergence (KLD) weight are adjusted to find
an appropriate balance between the effective reconstruction of pose conditioning
in the latent space, and the regularization of latents. Regularization pushes the
latents toward Gaussian distributions and keeps the non-expressive latents in
an over-parameterized latent space to be standard normal. This stabilizes the
sampling process and ensures stochastic behavior of latent samples in case of
occlusion. To achieve this balance, we use a linear KLD weight scheduler, where
the weight is initialized at a low value for KLD increment start epoch (see Tab. .
This allows the model to initially focus on achieving highly accurate conditioned
reconstructions. The KLLD weight is then steadily increased until KLD increment
end epoch is reached, ensuring probabilistic behavior under partial observability.

2.2 Mixture Density Network

With the POMDP, the mixture density network (MDN) takes in the mean and
variances of the latent distributions of the current belief state gy (2;—1|I.71) and
outputs the next belief state’s estimated posterior distribution. To better model
the uncertainty of the predicted belief state distribution, the output is a mixture
of Gaussian gj;(2|I.~") modeled through a multi-headed MLP.

Architecture: The shared backbone simply contains 2 fully connected layers and
rectified linear units (ReLU) activation with hidden layer size of 512. Additional
heads with 2 fully connected layers are used to generate y; and o?. The mixture
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weight, m;, is generated from a 3 layer MLP network. We limit the number of
Gaussians, K = 2.

Optimization: We train our network for 30,000 epochs using the batch size of
128 and an initial LR of 0.005, and apply LR decay to optimize training. This
takes approximately 30 minutes to train utilizing the GPU. During training,
the dataloader outputs the means and variances at the current timestamp and
indexed view, and the means and variances for the next timestamp, at a ran-
domly sampled neighboring view. This allows the MDN to learn how occluded
views advance into all the possible configurations from potentially unoccluded
neighboring views, as a mixture of Gaussian.

At each iteration, the negative log-likelihood loss is computed for 1000 sam-
ples drawn from the predicted mixture of distributions gy (z|I~"!) with respect
to the ground truth distribution g, (2;|I%). While the MDN is training, additional
Gaussian noise, given by € ~ AN(0,0?), is added to the means and variances of
the current timestamp ¢ — 1, where o € [0.001,0.01]. The Gaussian noise and
LR decay help prevent overfitting and reduce model sensitivity to environmental
artifacts like moving trees, moving water, etc.

2.3 NeRF

Architecture:  We implement our NeRF as a decoder to our belief state to
recover 3D observations utilizing an existing PyTorch implementation of Instant-
NGP (3)). We concatenate the latents to the inputs of two parts of the Instant-
NGP architecture: the volume density network, o(x), for the density values,
and the color network, C(r), for conditional RGB generation. While the overall
architecture is kept constant, the input dimensions of each network are modified
to allow additional latent concatenation.

Optimization: Empirically, we observe that it is essential to train the NeRF
such that it learns the distribution of scenes within the PC-VAE latent space.
Using only pre-defined learned samples to train may run the risk of relying on
non-representative samples. On the other hand, direct re-sampling during each
training iteration in Instant-NGP may lead to delayed training progress, due
to NeRF’s sensitive optimization. In our optimization procedure, we use an LR
of 0.002 along with an LR decay and start with pre-defined latent samples.
Then we slowly introduce the re-sampled latents. We believe that this strat-
egy progressively diminishes the influence of a single sample, while maintaining
efficient training. Based on our observations, this strategy contributes towards
Instant-NGP’s ability to rapidly assimilate fundamental conditioning and envi-
ronmental reconstruction, while simultaneously pushing the learning process to
be less skewed towards a single latent sample.

3 GUI Interface

For ease of interaction with our inference pipeline, our NeRF loads a pre-trained
MDN checkpoint, and we build a graphical user interface (GUI) using DearPyGUi
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Fig.2: NeRF graphical user interface. The GUI allows us to toggle and predict
with an input image path. The probe and predict function probes the current location
of the car and predicts the next. The screenshot is sharpened for visual clarity in the
paper.

for visualization purposes. We implement three features in the GUL: (a) predict,
(b) probe and predict, and (c¢) toggle.

Predict: We implement the function to perform prediction directly from a given
image path in the GUL. We use the distribution gy (z;—1|/I!7!) from PC-VAE
encoder, corresponding to the input image I1 =1, to predict the latent distribution
for the next timestamp belief state g/;(z|I:~"). This process is done on the fly
through the MDN. A sample from the predicted distribution is then generated
and used to condition the NeRF. This advances the entire scene to the next
timestamp.

Probe and predict: The sampled latent from the predicted distribution does
not correspond to a singular distribution and hence we can not directly predict
the next timestamp. To make our model auto-regressive in nature, we perform
density probing. We probe the density of the NeRF at the possible location co-
ordinates of the car to obtain the current timestamp and scene. This is then
used to know the actual state sampled from the belief state probability distribu-
tions. The new distribution enables auto-regressive predictions using the predict
function described above.

Toggle: The NeRF generates a scene corresponding to the provided input image
path using learned latents from PC-VAE. This function tests the NeRF decoder’s
functionality with a given belief state. When the input image is a fully observable
view (corresponding to a unknown belief state), the NeRF renders clear actor
and ego configurations respecting the input. This allows us to visualize the scene
at different timestamps and in different configurations.
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t-SNE visualization of latent data
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Fig. 3: Latent sample distribution clustering. The distributions of latent samples
for the Multi-Scene Two Lane Merge dataset are separable through t-SNE clustering.
In the figure, the clusters for Scene 0, Timestamp 0 and Scene 1, Timestamp 0 overlap
in distribution because they represent the same initial state of the environment under
dynamics uncertainty.

4 CARFF Evaluation

4.1 Pose-Conditional VAE

Reconstruction Quality: To analyze the reconstruction performance of the model
during training, we periodically plot grids of reconstructed images. These grids
consist of (a) randomly selected encoder inputs drawn from the dataset, (b) the
corresponding ground truth images for those inputs at each timestamp at the
same camera pose, and (c) reconstructed outputs at randomly sampled poses
respecting the input scene and timestamp. An example reconstruction grid is
provided in Fig. [I} The grid enables visual assessment of whether the model is
capable of accurately reconstructing reasonable images using the encoder inputs,
conditioned on the poses. This evaluation provides us with visual evidence of
improvement in reconstruction quality. We also quantitatively analyze the pro-
gressive improvement of reconstruction through the average PSNR calculated
over the training data (see Fig. [4).

The PC-VAE outputs in Fig. [T] only provides visual confirmation to assess
the quality of the latents learned by PC-VAE. Utilization of the 3D decoder later
in our method allows us to produce more high resolution visualizations of the
scene that can be used for further downstream tasks.

Latent Space Analysis To assess the quality of the latents generated by PC-
VAE, we initially use t-SNE plots to visualize the latent distributions as clus-
ters. Fig. [3] shows that the distributions of the latent samples for the Multi-
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Architectures Train PSNR SVM Accuracy NV PSNR
Multi-Scene Approaching Intersection

PC-VAE 26.47 89.17 26.37
PC-VAE w/o CL 26.20 83.83 26.16
Vanilla PC-VAE 25.97 29.33 25.93
PC-VAE w/o Freezing 24.82 29.83 24.78
PC-VAE w/ MobileNet 19.37 29.50 19.43
Vanilla VAE 26.04 14.67 9.84
Multi-Scene Two Lane Merge

PC-VAE 25.50 88.33 25.84
PC-VAE w/o CL 24.38 29.67 24.02
Vanilla PC-VAE 24.75 29.67 24.96
PC-VAE w/o Freezing 23.97 28.33 24.04
PC-VAE w/ MobileNet 17.70 75.00 17.65
Vanilla VAE 25.11 28.17 8.49

Table 2: PC-VAE metrics and ablations across Multi-Scene datasets.
CARFF’s PC-VAE outperforms other encoder architectures across the Multi-Scene
datasets in reconstruction and pose-conditioning.

Scene Two Lane Merge dataset are separable. While t-SNE is good at retaining
nearest-neighbor information by preserving local structures, it performs weakly
in preserving global structures. Therefore, t-SNE may be insufficient in capturing
the differences in distributions for all our datasets.

Instead, we pivot to Support Vector Machine to perform a quantitative evalu-
ation of the separability of the latents. We utilize a Radial Basis Function (RBF)
kernel with the standard regularization parameter (C' = 1). We perform 10-fold
validation on the latents to calculate the accuracy as a metric for clustering. See
Tab. 2] for the results.

Beyond separability, we analyze the recall and accuracy of the learned latents
directly from PC-VAE under partial and full observations. This achieves very
high accuracy even under a large number of samples while retraining decent
recall, enabling downstream MDN training. (See Fig. [5)

For the additional Hand-manipulation Object Reaching dataset, we used a
similar setup as detailed in Fig ?? with n = 1 to n = 50 samples from the
MDN’s predicted latent distributions from an potentially partially observable
image input. Similar to the CARLA dataset results, we achieve an ideal margin
of belief state coverage generated under partial observation (recall), and the
proportion of correct beliefs sampled under full observation (accuracy).

4.2 Fully Observable Predictions

One of the tasks of the MDN is to forecast the future scene configurations under
full observation. We quantitatively evaluate our model’s ability to forecast fu-
ture scenes by comparing bird’s-eye views rendered from the NeRF with chosen
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Single-Scene Approaching Intersection

Result I, I, Ty Ly Ly Ly L Ly Ly Iy,
I, 29.01 597 6.08 6.52 6.44 6.03 6.31 6.36 6.26 6.28
ft2 5.42 27.51 3.07 4.67 4.58 4.17 4.43 451 439 4.39
ft3 6.06 2.81 28.12 4.47 4.68 4.19 4.05 4.61 4.47 4.52
I, 7.01 5.37 5.03 29.40 4.99 5.08 5.03 541 5.28 5.32
fts 6.87 5.2 4.93 5.00 29.44 4.53 4.46 5.19 5.05 5.09
ftS 6.29 4.55 4.27 4.8 4.24 29.02 4.02 4.53 4.38 4.44
ft7 6.76 5.05 4.76 531 514 4.36 29.50 4.50 4.86 4.93
ftg 6.73 5.02 4.74 525 510 4.64 4.76 29.46 4.41 4.86
ftg 6.75 5.00 4.70 5.23 5.07 4.64 4.85 4.52 29.55 4.42
Iy, 679 506 4.75 530 515 4.69 493 501 4.34 29.55

Multi-Scene Approaching Intersection

Result Iy Iy, Iy, Iy, I I
I, 28.10 5.24 5.50 1.67 3.29 3.92
I, 5.23 28.02 6.11 4.70 3.21 4.84
ftS 5.43 6.03 27.97 4.85 4.53 2.93
I~t4 1.71 4.73 5.00 28.26 2.25 3.08
ft5 3.68 3.24 4.91 2.76 28.21 2.99
ft6 4.02 491 3.27 3.13 2.61 28.26

Multi-Scene Two Lane Merge

Result Iy, Iy, Iy, Iy, Iy Iy
ftl 28.27 5.31 6.41 28.23 4.77 5.42
ft2 5.22 28.23 5.17 5.27 2.91 4.01
Iy 6.32 5.09 28.14 6.33 5.01 4.28
ft4 28.27 5.27 6.37 28.23 4.72 5.37
I~t5 4.64 2.73 5.01 4.71 28.08 5.29
ft6 5.32 4.02 4.32 5.33 5.34 28.17

Hand-manipulation Object Reaching

Result Iy, I, I, Iy, I I
ftl 30.71 10.74 10.63 30.71 9.81 11.13
I, 10.07 30.32 9.25 10.07 10.88 10.17
I, 9.98 9.11 30.37 9.98 10.78 10.02
I, 30.66 10.69 10.58 30.66 9.77 11.09
I, 8.19 10.21 10.1 8.19 29.49 9.99
ftG 10.96 10.6 10.49 10.96 11.08 30.67

Table 3: Complete PSNR values for fully observable predictions for all
CARLA datasets and the Hand-manipulation dataset. The table contains
PSNR values between the ground truth images and either a toggled image (marked
as Ir,), or a predicted image from the NeRF decoder (marked as I;,). Toggled or
predicted images that correspond to the correct ground truth are bolded and have a
extremely high PSNR value, indicating high fidelity results. The PSNR values for in-
correct correspondances are replaced with the difference between the incorrect PSNR

and the bolded PSNR associated with a correct correspondance.
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Fig.4: Average train PSNR plot for all CARLA datasets and the hand-
manipulation dataset. The plot shows the increase in average training PSNR of all
images for each dataset, over the period of the training process.

ground truth images of the scene for the various timestamps (see Tab. . The
values are calculated and displayed for all four datasets. In Tab. 3] images are
marked as either toggled (I;,) or predicted (I;,). Toggled images in the table
cannot be predicted deterministically due to it being the first timestamp in the
dataset, or the state of the previous timestamps across scenes being the same in
case of dynamics uncertainty. Due to the same reason, in the Multi-Scene Two
Lane Merge and the Hand-manipulation Object Reaching Datasets, there are
additional bolded PSNR values for the pairs (I;,,I;,) and (I1,, I;,).

We demonstrate that the toggled or predicted images that correspond to the
correct ground truth show a PSNR value around 29, indicating high fidelity 3D
reconstruction and clear visual decodings as the output of CARFF.

4.3 Architecture Ablations

The results presented in Tab. @] substantiate the benefits of our PC-VAE encoder
architecture compared to other formulations. Specifically, a non-conditional VAE
fails in SVM accuracy as it only reconstructs images and does not capture the un-
derlying 3D structures. Vanilla PC-VAE and PC-VAE without freezing weights
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Fig. 5: Multi-Scene dataset accuracy and recall curves from learned latents.
We test our framework across n = 1 and n = 50 samples from PC-VAE’s latent
distributions from ego-centric image input. Across the number of samples n, we achieve
an ideal margin of belief state coverage generated under partial observation (recall),
and the proportion of correct beliefs sampled under full observation (accuracy) for the
MDN to learn. As we significantly increase the number of samples, the accuracy starts
to decrease due to randomness in latent distribution resampling.

require careful fine-tuning of several hyper-parameters and don’t generalize well
to drastic camera movements. Our experiments show that our proposed model is
capable of sustaining stochastic characteristics via latent representations in the
presence of occlusion, while simultaneously ensuring precise reconstructions.

Encoder Architectures Train PSNR SVM Acc. NV PSNR
PC-VAE 26.30 75.20 25.24
PC-VAE w/o CL 26.24 70.60 24.80
Vanilla PC-VAE 26.02 25.70 24.65
PC-VAE w/o Freezing 24.57 5.80 24.60
PC-VAE w/ MobileNet 17.14 19.70 17.16
Vanilla VAE 24.15 10.60 11.43

Table 4: PC-VAE ablations. CARFF’s PC-VAE encoder outperforms other ar-
chitectures in image reconstruction and pose-conditioning. We evaluate on: PC-VAE
without Conv. Layer, PC-VAE with a vanilla encoder, PC-VAE without freezing ViT
weights, PC-VAE replacing ViT with MobileNet, and non pose-conditional VAE.
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