
Active Learning in Meta-Learning: Enhancing Context Set Labeling 19

A Details for Max-Margin Motivation

The following optimization problem is one form of an N -class max-margin prob-
lem, i.e. a multi-class support vector machine [13], on a training set {(xi, yi)}mi=1:

min
w1,...,wN

N∑
y=1

∥wy∥2 s.t. ∀i ∈ [m], ∀y′ ̸= yi, w
T
yi
xi ≥ wT

y′xi + 1. (6)

This is a “hard” version of the problem used as a classification head by MetaOpt-
Net [40], and can be obtained in their framework by taking the penalty parameter
C → ∞.

The decision boundaries obtained by small-step-size gradient descent for lin-
ear predictors with cross-entropy loss on separable data converge to those ob-
tained by (6), as shown by Theorem 7 in Soudry et al . [62], for almost all datasets.
Thus, ANIL [51], which uses gradient descent for linear predictors with cross-
entropy loss on separable data, will approximately obtain the same solution when
using enough steps with appropriately small learning rates.

MetaOptNet uses the homogeneous predictors discussed here. We can han-
dle non-homogeneous linear predictors (wTx + b instead of just wTx) with the
standard trick of adding a constant 1 feature to each data point. This solution
actually does not quite maximize the margin on the original problem, since it
effectively adds b2 to the objective in (6), but ANIL will find exactly this same
solution when using gradient descent on a function with a separate intercept.

As visualized in Fig. 2 and explained in Sec. 3.3, if the class-conditional data
distributions are isotropic Gaussians with the same covariance matrices, it is
more advantageous to label the cluster centers than a random point from each
cluster (supported by Corollary 1). We provide the proof for Corollary 1 below.

Corollary 1. Suppose Y ∼ Uniform([N]), and X | (Y = y) ∼ N (µy, σ
2I),

where the µi are orthonormal. Then the max-margin separator (6) on {(µi, i)}Ni=1

is Bayes-optimal for Y | (X = x).

Proof. Combine Proposition 1 and Lemma 1 below.

The orthonormal assumption keeps the proof tractable; far more analysis
would be needed without it. With high-dimensional meta-learned features that
are well-aligned to the learning problem, however, it is reasonable to expect that
inner products between different classes will be much smaller than the within-
class inner products.

This optimality result can break when the clusters do not share a spherical
covariance; consider Fig. 4a, where the data is still Gaussian but the shared
class-conditional covariance is not spherical. In the one-shot case, max-margin
on the separators does not choose the optimal separator. In this case, we could
manually select points to choose the correct line. Doing so, however, is quite
risky; since we do not know the data labels (or that it is actually Gaussian),
we might incorrectly separate the data. Figure 4b shows the same problem in a
three-shot setting; here, even though the data is truly generated from a mixture

20 W. Bae et al.

(a) Trained on N cluster centers (b) Trained on 3N cluster centers

Fig. 4: Decision boundaries using a multiclass SVM (6) trained on cluster centers
(shown by stars), with (a) the one-shot case and (b) the three-shot case.
of two Gaussians, fitting a mixture of six Gaussians gives us an approximate set
cover of the data, and the max-margin separator now works well.

In fact, we can expect that (a) as the number of clusters grows, the cluster
centers produce a better and better set cover of the dataset; (b) the max-margin
separator on a set cover will approximate the max-margin separator on the full
dataset, since the support vectors are all nearby.

A.1 Proofs

Proposition 1. Suppose that {xi}Ni=1 are orthonormal. Then, the solution to
(6) with the dataset {(xy, y)}Ny=1 is given by wy = xy − 1

N

∑N
i=1 xi, and hence

for any x, argmax
y

wT
y x = argmin

y
∥x− xy∥ (5)

Proof. We will be able to analytically solve the KKT conditions for (6) in this
case. Rather than using existing analyses of (6), it will be simpler to directly
analyze this particular case.

Let w =

w1

...
wN

 ∈ RNd, where d is the dimension of the xi and wy. The

objective of our optimization problem is then simply ∥w∥2.
We will next define a matrix A such that the constraints can be written

as Aw + 1 ≤ 0, with A ∈ RN(N−1)×Nd and ≤ interpreted elementwise. Each
constraint is of the form −wT

i xi + wT
j xi + 1 ≤ 0, where i ̸= j are class indices

in [N]. We can write the corresponding row of A as (Ej − Ei)xi, where Ei ∈

RNd×d are given by Ei =

 0(i−1)d×d

Id
0(N−i−1)d×d

; these Ei are a block-matrix analogue

of standard basis vectors, so that Eixi ∈ RNd has xi in the ith block of d
coordinates, and 0 elsewhere. We will order these constraints in A in “row-major”
order: recalling that i ̸= j, this means we have first i = 1 j = 2, then i = 1 j = 3,

Active Learning in Meta-Learning: Enhancing Context Set Labeling 21

up to i = 1 j = N , followed by i = 2 j = 1, i = 2 j = 3, and so on. Let ℓ(i, j)
give the index of the corresponding constraint, so that e.g. ℓ(1, 3) = 2.

Now, the problem can be written

min
w∈RNd

1

2
∥w∥2 s.t. Aw + 1 ≤ 0,

with the 1
2

introduced for convenience. The KKT conditions for this problem are

w +ATµ = 0 Aw + 1 ≤ 0 µ ≥ 0 µ⊙ (Aw + 1) = 0,

where ⊙ is elementwise multiplication. From the first condition, w = −ATµ,
where µ ∈ RN(N−1) is any vector satisfying

µ ≥ 0 AATµ− 1 ≥ 0 µ⊙ (AATµ− 1) = 0.

Since (6) is a strictly convex minimization problem with affine constraints, these
conditions are necessary and sufficient for optimality, and the solution w is
unique.

We can reasonably expect, since the xi are orthonormal, that all constraints
should be active, meaning that AATµ = 1. Indeed, choosing µ = (AAT)−11
automatically satisfies the second and third conditions; it only remains to show
that this µ ≥ 0 in order to show this as an optimal solution to (6).

To do this, we will explicitly characterize AAT:

(AAT)ℓ(i,j),ℓ(i′,j′) = xT
i (Ej − Ei)

T(Ej′ − Ei′)xi′ = (δii′ + δjj′ − δij′ − δji′)x
T
i xi′ ,

where δij = 1(i = j) is the Kronecker delta, since ET
i Ej = δijId.

Since the xi are orthonormal, xT
i xi′ = δii′ . As we know i ̸= j and i′ ̸= j′, this

simplifies to
(AAT)ℓ(i,j),ℓ(i′,j′) = δii′(1 + δjj′).

Thus (AAT) is a block matrix with diagonal blocks of size (N − 1) × (N − 1)
with values IN−1 + 1N−11

T
N−1, and all off-diagonal blocks zero. Taking µ =

(AAT)−11N(N−1), the zero blocks contribute nothing, so each block of N − 1
entries of µ is (IN−1 + 1N−11N−1)

−11N−1.
Note that 1N−11

T
N−1 has one eigenvector v1 = 1√

N−1
1 with eigenvalue λ1 =

N − 1, and the remaining eigenvalues are all zero with eigenvectors satisfying
vTi 1 = 0. Adding I to this matrix simply increases all eigenvalues by one. Thus,

(
I + 11T

)−1
1 =

1

N

(
1√

N − 1
1

)(
1√

N − 1
1

)T

1 (7)

+

N−1∑
i=2

vi v
T
i 1︸︷︷︸
0

=
1

N

1T1

N − 1︸ ︷︷ ︸
1

1 =
1

N
1, (8)

and so µ = 1
N
1N(N−1), which is indeed ≥ 0; thus this is an optimal solution to

the problem.

22 W. Bae et al.

We next reconstruct w = −ATµ = − 1
N
AT1N(N−1). Consider the block wi

inside w; its value will be the negative mean of the entries of A with an Ei in
them. The ℓ(i, j) rows for j ̸= i contribute N − 1 entries of the form −Eixi. We
also have the ℓ(k, i) rows, which have one Eixk term for each k ̸= i. Thus

wi = − 1

N

−(N − 1)xi +
∑
k ̸=i

xk

 = − 1

N

(
−Nxi +

N∑
k=1

xk

)
= xi − x̄,

where x̄ = 1
N

∑N
k=1 xk. Thus, for a test point x,

argmax
i

wT
i x = argmax

i
xT
i x− x̄Tx = argmax

i
xT
i x.

Because the xi are orthonormal, this is further equal to

argmin
i

∥xi∥2 + ∥x∥2 − 2xT
i x = argmin

i
∥x− xi∥.

Lemma 1. If X | Y = y ∼ N (µy, σ
2I) and Y ∼ Uniform([N]), the Bayes-

optimal classifier is given by

f∗(x) = argmin
y

∥x− µy∥.

Proof. This well-known fact follows by combining

p(Y = y | X = x) =
p(X = x | Y = y)p(Y = y)

p(X = x)
∝ p(X = x | Y = y)

with the definition of the density for X,

argmax
y

1

(2πσ2)d/2
exp

(
− 1

2σ2
∥x− µy∥2

)
= argmin

y
∥x− µy∥.

B Implementation Details for Meta Learning Algorithms

Metric-based We use a meta learning library called learn2learn [5] to imple-
ment ProtoNet [61]. Following the original paper, we train a model with 30-way
and 20-way for 1-Shot and 5-Shot, respectively, for 3,000 iterations. We use a 4
layer convolutional neural network (Conv4) with 64 channel size, and the batch
size is set to 100. For optimization, we employ an Adam optimizer with a learning
rate of 0.01 without having a learning rate schedule.

Optimization-based We use learn2learn library to implement both MAML
[17] and ANIL [51]. We use Conv4 with 32 channel size for MAML and 64
channel size for ANIL (larger channel size does not perform better for MAML).
We train both MAML and ANIL for 60,000 iterations. For optimizer, we employ
an Adam optimizer for both with learning rates of 0.003 and 0.001 (adaptation

Active Learning in Meta-Learning: Enhancing Context Set Labeling 23

learning rates of 0.5 and 0.1) for MAML and ANIL, respectively. Batch sizes are
set to 32 for both.

For MetaOptNet [40], we use the publicly available code provided by the au-
thors of the paper (https://github.com/kjunelee/MetaOptNet). We employ
the dual formulation of Support Vector Machine (SVM) proposed in MetaOpt-
Net (MetaOptNet-SVM) for experiments with the training shot of 15, and use
the default hyperparameter settings. For instance, we use a SGD optimizer with
initial learning rate of 0.1 which decays step-wise. We train a model for 60 epochs
with a batch size of 8.

Model-based For both Conditional Neural Process (CNP) [20] and Attentive
Neural Process (ANP) [35], we use the publicly available code provided by the
authors of the paper that addresses regression tasks for computer vision prob-
lems [19] (https://github.com/boschresearch/what-matters-for-meta-
learning).

As the authors provide the model checkpoints for CNP on Distractor dataset
and ANP on ShapeNet1D, we utilize them to compare active learning methods
in meta-test time. We use 2-Shot for context sets in meta-test time instead of
25-Shot as done in the original work, since 25-Shot is too large to investigate the
difference between active learning methods.

Pre-training-based We use the publicly available code provided by the authors
of the papers for both Baseline++ [12] (https://github.com/wyharveychen/
CloserLookFewShot) and SimpleShot [68] (https://github.com/mileyan/
simple_shot). For both models, we use the features from the pre-trained mod-
els on the whole training dataset in inference time. As reported in the public
repository for Baseline++, the performance on CUB for 1-Shot and 5-Shot is
lower than the numbers reported in the paper by about 1.1% and 2.5%, re-
spectively. Similarly, the reproduced performance of SimpleShot for 1-Shot and
5-Shot is lower by about 4 ∼ 5%. Note that the numbers correspond for the case
of fully stratified random sampling.

C Relationship with Semi-Supervised Few-Shot learning

In this section, we describe the relationship between active meta-learning and
semi-supervised few-shot learning [53,69].

Both semi-supervised few-shot learning and active meta-learning aim to re-
duce the cost of manual data annotation, but they approach this goal differently.
Semi-supervised few-shot learning leverages unlabeled data points without addi-
tional annotation, while active meta-learning iteratively adds new labeled data
points selected from an unlabeled pool.

Among semi-supervised few-shot learning approaches, pseudo-labeling [31] is
particularly closely related to active learning. Both pseudo-labeling and active
learning utilize unlabeled data, but their methodologies differ. Active learning

https://github.com/kjunelee/MetaOptNet
https://github.com/boschresearch/what-matters-for-meta-learning
https://github.com/boschresearch/what-matters-for-meta-learning
https://github.com/wyharveychen/CloserLookFewShot
https://github.com/wyharveychen/CloserLookFewShot
https://github.com/mileyan/simple_shot
https://github.com/mileyan/simple_shot

24 W. Bae et al.

uses uncertainty or diversity to select data for oracle labeling, targeting points
whose labels are unknown. In contrast, pseudo-labeling uses a trained model
to predict data labels, which can introduce errors if predictions are incorrect.
Thus, pseudo-labeling focuses on data points where the model is already confi-
dent—precisely the points active learning would not select.

Combining these contrasting methods could be beneficial and interesting.
Pseudo-labeling requires a well-trained classifier, which active learning can sup-
port by providing a robust labeled dataset.

D Implementation Details for Active Learning Strategies

In this section, we provide detailed description for the implementation of the
following active learning methods.

DPP [8] We use DPPy library [23] to implement DPP selection. Gram
matrix of the features from the penultimate layer are used as L-ensembles for
DPP. We employ k-DPP to select k number of context data points.

Coreset [57] We refer to both original code and code provided by the
authors of Typiclust and ProbCover. Since we assume that there is no initial
labeled data points, we randomly choose the first data point and then apply the
greedy algorithm after that.

Typiclust [27] We refer to the publicly available code provided by the au-
thors of the paper (https://github.com/avihu111/TypiClust). As the max-
imum number of data points to annotate is 25 (= 5-Way × 5-Shot), we do not
set the maximum number of clusters unlike the original paper. We set the k in
k-NN to 20 as with the original work.

ProbCover [70] We use the code provided by the original authors of the paper
(it is the same as Typiclust). As we state in Appendix G and Appendix J, we
exploit the features from the meta learners instead of self-supervised features to
determine the radius parameters of ProbCover. In particular, the radius for each
algorithm and dataset combination is determined as shown in Appendix G.

GMM (Ours) We refer to a publicly available implementation for GMM
(https://github.com/ldeecke/gmm-torch). As previously mentioned, we ini-
tialize the cluster centers using k-means. Then, we update the cluster means
and covariance matrix (shared by all the clusters) using expectation maximiza-
tion algorithm for up to 100 iterations. We make the covariance matrix shared
between the clusters because we assume that the “influence" of each annotated
data point to other data points is roughly the same regardless of data point
although the weight of each dimension may be different (if they are the same, it
is equivalent to k-means).

E Comparison of quality of selected data points

In this section, we estimate the quality of selected data points from the low
budget active learning methods. In Fig. 5, we compare them in the distance and

https://github.com/avihu111/TypiClust
https://github.com/ldeecke/gmm-torch

Active Learning in Meta-Learning: Enhancing Context Set Labeling 25

Coreset0

200
1-Shot Train Strat.

Coreset

1-Shot Unstrat.

Coreset

5-Shot Train Strat.

Coreset

5-Shot Unstrat.

Typiclust0

100

Typiclust Typiclust Typiclust

ProbCover0

100

ProbCover ProbCover ProbCover

6 8
GMM

0

100

15 20
GMM

15 20
GMM

20 25
GMM

(a) Distributions of distances

Coreset0

100

1-Shot Train Strat.

Coreset

1-Shot Unstrat.

Coreset

5-Shot Train Strat.

Coreset

5-Shot Unstrat.

Typiclust0

100

Typiclust Typiclust Typiclust

ProbCover0

100

ProbCover ProbCover ProbCover

0.25 0.50
GMM

0

100

0.25 0.50 0.75
GMM

0.25 0.50 0.75
GMM

0.25 0.50 0.75
GMM

(b) Distributions of accuracies

Fig. 5: Estimation of goodness of selected data points on MiniImageNet with ANIL
using the distribution of (a) the distance between the unlabeled points and closest
selected points, and (b) the equality between the true labels of unlabeled points and
labels of the closest select points. Red dotted lines show mean values.

Data & Model Clustering
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

MiniImage.
MAML

k-means 56.75 ± 0.20 33.29 ± 0.26 37.26 ± 0.18 65.76 ± 0.18 41.61 ± 0.24 59.17 ± 0.20
k-means++ 56.12 ± 0.26 32.87 ± 0.32 38.53 ± 0.21 65.49 ± 0.21 43.61 ± 0.32 58.63 ± 0.26

GMM 58.82 ± 0.24 33.34 ± 0.24 37.68 ± 0.19 67.18 ± 0.18 54.35 ± 0.20 59.05 ± 0.20

FC100
ProtoNet

k-means 50.20 ± 0.17 29.69 ± 0.20 35.03 ± 0.23 54.07 ± 0.17 41.42 ± 0.23 41.34 ± 0.23
k-means++ 49.91 ± 0.17 27.27 ± 0.22 34.93 ± 0.27 54.72 ± 0.30 41.61 ± 0.39 42.64 ± 0.39

GMM 50.22 ± 0.18 34.23 ± 0.23 35.03 ± 0.23 54.76 ± 0.17 46.30 ± 0.21 47.03 ± 0.20

Table 7: Comparison of GMM and k-Means selections on MiniImageNet and FC100
using MAML and ProtoNet.

accuracy as explained in the caption with ANIL [51] on MiniImageNet. Whether
a task is 1-Shot or 5-Shot, or train-time stratified or unstratified, we can observe
that the metrics for GMM are consistently the best.

F Comparison to k-Means based methods

Tab. 7 compares the proposed GMM method to k-means and k-means++ since
they are closely related.

The performance of GMM, k-means and k-means++ are similar in general
but for some cases, GMM is significantly better than the others. We conjecture
it is because some features are more important than the others, and since GMM
takes it into account using Mahalanobis distance (instead of Euclidean distance
used in k-means), it selects data points that represents nearby data points better.

G Difficulty of Tuning δ Parameter for ProbCover

In Section 3.2 of Yehuda et al . [70], the authors proposed to tune the radius δ
based on the purity defined as,

π(δ) = P ({x : Bδ(x) is pure}) where Bδ(x) = {x′ : ∥x′ − x∥2 ≤ δ} (9)

26 W. Bae et al.

(a) Proto FC100 1-shot (b) Proto FC100 1-shot (c) MAML Mini. 1-shot (d) MAML Mini. 5-shot

(e) ANIL Tiered. 1-shot (f) ANIL Tiered. 5-shot (g) Baseline++ CUB (h) SimpleShot Mini.

Fig. 6: Estimation of the optimal radius for ProbCover in meta-learning
Here, a ball Bδ(x) is “pure" if f(x′) = y, ∀x′ ∈ Bδ(x) where y is the label of x.
As the radius δ increases, the purity decreases monotonically. They choose the
optimal radius δ∗ as δ∗ = max{δ : π(δ) ≥ 0.95}. More specifically, they first run
k-means with k being the number of classes. Then, the purity is measured using
the k-means assignment as pseudo-labels.

In their setting (pool-based active learning for image classification), since it
is hard to obtain meaningful features from a model trained only a few examples,
they use the features from self-supervised learning methods such as SimCLR [11]
It is, however, not the case for meta-learning. In meta-test time, the features from
the meta learner are usually more meaningful than self-supervised learning fea-
tures. Hence, we use the mete learner’s features to estimate the optimal radius
for ProbCover. Following the original paper, we first run k-means and compute
the purity in the same way. Since the features can differ by meta learning algo-
rithms and the number of shots, we provide the plots for different algorithms as
well as 1 and 5-Shots as shown in Fig. 6 (we select the optimal radius δ based on
these plots throughout the experiments). For Fig. 6(a)-(f), we also provide the
meta-test performance of stratified and unstratified versions of Random selection
to demonstrate that the estimated optimal radius and best radius for meta-test
accuracy do not align.

Another difficulty of estimating the optimal radius is that it is hard to set
a search space for the radius. As shown in the x-axis of Fig. 6, the reasonable
search space varies significantly depending on the meta-learning algorithms and
datasets we use. In Yehuda et al . , this was less of a problem since they use
SimCLR features, which are normalized: the range of the radius is in [0, 1].
However, as shown in Appendix J, if we use SimCLR features in meta-test time
to actively select context sets, the performance generally drops.

H Additional Experimental Results for Classification

In this section, we provide addtional experimental results for few-shot image
classification. In Tab. 8, we compare the active learning strategies for ANIL [51]

Active Learning in Meta-Learning: Enhancing Context Set Labeling 27

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 47.55 ± 0.18 38.19 ± 0.16 34.79 ± 0.15 63.84 ± 0.17 57.92 ± 0.23 57.56 ± 0.18

Entropy 43.89 ± 0.16 32.73 ± 0.16 26.33 ± 0.14 57.56 ± 0.18 40.23 ± 0.18 34.16 ± 0.17

Margin 47.35 ± 0.17 36.01 ± 0.14 30.79 ± 0.14 62.87 ± 0.17 54.89 ± 0.24 56.76 ± 0.17

DPP 49.28 ± 0.17 38.17 ± 0.15 36.52 ± 0.15 63.24 ± 0.19 57.28 ± 0.21 57.23 ± 0.18

Coreset 47.32 ± 0.18 36.97 ± 0.20 40.72 ± 0.14 56.93 ± 0.18 47.68 ± 0.22 52.89 ± 0.17

Typiclust 52.95 ± 0.18 37.21 ± 0.17 34.05 ± 0.14 63.13 ± 0.19 55.84 ± 0.22 56.76 ± 0.17

ProbCover 48.53 ± 0.53 37.61 ± 0.49 34.53 ± 0.43 63.48 ± 0.51 57.77 ± 0.56 57.12 ± 0.58

GMM (Ours) 60.29 ± 0.19 50.92 ± 0.22 42.17 ± 0.17 66.48 ± 0.18 60.12 ± 0.24 60.28 ± 0.17

Table 8: 5-Way K-Shot on TieredImageNet with ANIL, with Picktrain
θ random.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 40.41 ± 0.74 31.96 ± 0.56 32.76 ± 0.63 53.11 ± 0.66 47.73 ± 0.70 47.48 ± 0.76

DPP 40.47 ± 0.80 30.33 ± 0.67 33.41 ± 0.66 51.44 ± 0.68 48.21 ± 0.67 47.45 ± 0.68

Coreset 39.20 ± 0.71 27.55 ± 0.66 30.16 ± 0.69 46.80 ± 0.67 24.08 ± 0.65 25.75 ± 0.72
Typiclust 45.20 ± 0.78 26.35 ± 0.47 27.00 ± 0.43 52.39 ± 0.66 23.97 ± 0.42 24.12 ± 0.39
ProbCover 41.93 ± 0.67 26.87 ± 0.62 27.43 ± 0.48 54.36 ± 0.76 37.00 ± 0.69 38.33 ± 0.76

GMM (Ours) 51.16 ± 0.67 40.89 ± 0.74 41.61 ± 0.87 60.48 ± 0.86 52.68 ± 0.70 51.79 ± 0.70

Table 9: 5-Way K-Shot on FC100 with MetaOptNet, with Picktrain
θ random.

Pickevalθ

1-Shot 5-Shot
Fully strat. Train strat. Fully strat. Train strat.

Random 45.15± 0.73 26.28± 0.61 61.22± 0.72 51.89± 0.73

Entropy 37.08± 0.75 21.62± 0.37 47.93± 0.74 32.74± 0.60

Margin 41.53± 0.73 24.28± 0.51 62.15± 0.70 50.90± 0.75

DPP 44.52± 0.75 26.32± 0.58 60.93± 0.72 51.79± 0.75

Coreset 45.85± 0.73 27.04± 0.54 56.48± 0.72 40.39± 0.68

Typiclust 44.53± 0.71 22.97± 0.42 34.21± 0.77 20.04± 0.06

ProbCover 49.32± 0.71 24.61± 0.52 55.60± 0.66 32.24± 0.67

GMM (Ours) 52.77± 0.72 28.17± 0.64 62.64± 0.71 50.40± 0.75

Table 10: 5-Way K-Shot on MiniImageNet with SimpleShot, with Picktrain
θ random.

on the TieredImageNet dataset. Similarly, Tab. 9 provides the results with
MetaOptNet [40] on FC100 dataset. Tab. 10, Tab. 11, and Tab. 12 are for Sim-
pleShot [68], ProtoNet [61], and ANIL [51] on MiniImageNet, respectively. Note
that Entropy and Margin selections are not applicable for MetaOptNet-SVM.
Regardless of meta-learning algorithm and dataset, GMM significantly outper-
forms the other active learning methods, and some of them are worse than the
Random selection.

I Additional Experimental Details for Regression

Gao et al . propose the Distractor and ShapeNet1D datasets to compare meta
learning algorithms for vision regression tasks. They evaluate meta learners for

28 W. Bae et al.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 47.70 ± 0.20 39.65 ± 0.28 38.72 ± 0.27 64.66 ± 0.18 57.36 ± 0.27 57.42 ± 0.25

Entropy 44.33 ± 0.20 36.35 ± 0.28 34.87 ± 0.27 61.23 ± 0.19 49.83 ± 0.31 48.46 ± 0.32
Margin 47.07 ± 0.20 37.69 ± 0.27 37.84 ± 0.28 63.79 ± 0.18 55.25 ± 0.29 56.15 ± 0.27
DPP 47.90 ± 0.20 39.17 ± 0.28 37.89 ± 0.26 64.36 ± 0.19 57.48 ± 0.26 57.37 ± 0.25

Coreset 47.86 ± 0.20 39.51 ± 0.26 37.79 ± 0.26 55.09 ± 0.20 50.14 ± 0.29 50.27 ± 0.28
Typiclust 59.51 ± 0.17 38.47 ± 0.27 37.57 ± 0.27 61.02 ± 0.19 51.82 ± 0.31 52.02 ± 0.30
ProbCover 48.51 ± 0.20 35.25 ± 0.26 34.50 ± 0.25 43.61 ± 0.19 38.63 ± 0.21 38.24 ± 0.20

GMM (Ours) 64.50 ± 0.16 47.88 ± 0.32 44.71 ± 0.29 67.03 ± 0.19 57.55 ± 0.29 56.44 ± 0.30

Table 11: 5-Way K-Shot on MiniImageNet with ProtoNet, with Picktrain
θ random.

Pickeval
θ

1-Shot 5-Shot
Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Random 46.59 ± 0.19 36.70 ± 0.19 34.79 ± 0.18 61.35 ± 0.19 55.24 ± 0.20 56.65 ± 0.19

Entropy 44.63 ± 0.20 35.51 ± 0.18 27.35 ± 0.14 55.09 ± 0.19 39.71 ± 0.20 37.45 ± 0.19
Margin 46.58 ± 0.19 36.60 ± 0.19 32.46 ± 0.18 55.62 ± 0.19 40.40 ± 0.20 37.67 ± 0.19
DPP 47.33 ± 0.19 37.45 ± 0.17 37.76 ± 0.18 61.08 ± 0.19 56.18 ± 0.18 57.08 ± 0.18

Coreset 46.40 ± 0.21 38.37 ± 0.17 41.34 ± 0.17 53.74 ± 0.20 47.81 ± 0.20 51.62 ± 0.19
Typiclust 54.44 ± 0.18 36.78 ± 0.17 34.52 ± 0.19 60.87 ± 0.18 52.56 ± 0.20 55.11 ± 0.19
ProbCover 51.56 ± 0.18 27.49 ± 0.15 41.46 ± 0.17 61.68 ± 0.18 53.80 ± 0.20 42.70 ± 0.22

GMM (Ours) 58.50 ± 0.18 48.13 ± 0.20 40.26 ± 0.18 65.14 ± 0.17 59.01 ± 0.20 61.48 ± 0.19

Table 12: 5-Way K-Shot on MiniImageNet with ANIL, with Picktrain
θ random.

intra-category (IC) and cross-category (CC) inputs where CC corresponds to
the cross-domain in few-shot image classification.

Distractor consists of 10 object classes for a training set and 2 novel classes
for CC evaluation. Each class contains 1, 000 randomly sampled objects from
ShapeNetCoreV2 [10]. 20% of training set is reserved for IC evaluation. In this
dataset, each image consists of two objects: the object of interest and a distractor
object, which are positioned randomly. The goal is to recognize and locate the
object of interest within the image in the presence of a distractor.

ShapeNet1D [19] consists of 27 object classes for a training set and 3 object
classes for CC evaluation. Each object class contains 50 images, and 10 images
are used for IC evaluation. ShapeNet1D aims to predict the 1D pose, i.e., rotation
angle, around the azimuth axis of an object.

To analyze these vision regression tasks, we compare various active learning
strategies in the 2-shot setting. We use CNP for Distractor, NP for ShapeNet1D.
More details about the models can be found in Appendix B.

J Comparison to Self-Supervised Features

ProbCover and Typiclust use self-supervised features to actively select new data
points to annotate, since there are not enough labeled data to train a classifier to
output meaningful features. Instead, they utilize the features from SimCLR [11].
To validate if it is better to use the features from a meta learner than SimCLR in

Active Learning in Meta-Learning: Enhancing Context Set Labeling 29

Dataset Features
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Mini.
MAML 55.65 ± 0.18 27.45 ± 0.17 35.46 ± 0.18 64.16 ± 0.18 46.70 ± 0.21 57.83 ± 0.21
SimCLR 44.84 ± 0.44 27.59 ± 0.35 34.80 ± 0.47 65.95 ± 0.43 36.03 ± 0.48 57.77 ± 0.47

FC100
ProtoNet 46.01 ± 0.16 30.96 ± 0.19 30.61 ± 0.21 47.54 ± 0.17 43.61 ± 0.18 44.03 ± 0.21
SimCLR 36.07 ± 0.44 29.60 ± 0.46 30.13 ± 0.45 48.59 ± 0.49 43.29 ± 0.49 43.89 ± 0.59

Table 13: Comparison of MAML and SimCLR features for Typiclust.

Dataset Features
1-Shot 5-Shot

Fully strat. Train strat. Unstrat. Fully strat. Train strat. Unstrat.

Mini.
MAML 52.81 ± 1.16 21.91 ± 0.24 36.21 ± 0.18 64.70 ± 0.91 42.07 ± 0.49 23.40 ± 0.36
SimCLR 47.57 ± 0.42 25.35 ± 0.38 32.19 ± 0.43 64.33 ± 0.39 36.64 ± 0.58 26.16 ± 0.43

FC100
ProtoNet 48.66 ± 0.16 32.86 ± 0.22 33.58 ± 0.19 51.11 ± 0.17 44.20 ± 0.24 44.40 ± 0.24
SimCLR 31.40 ± 0.42 29.53 ± 0.42 28.39 ± 0.43 47.11 ± 0.39 39.33 ± 0.54 45.40 ± 0.52

Table 14: Comparison of MAML and SimCLR features for ProbCover.

meta-learning, we compare SimCLR features to the features from either MAML
or ProtoNet for Typiclust and ProbCover as shown in Tab. 13 and Tab. 14. Here,
we use MiniImageNet and FC100 datasets for MAML and ProtoNet, respecitvely
as with Tab. 2 and Tab. 1. For both Typiclust and ProbCover, although there are
a couple of cases where SimCLR features are better, it is significantly worse than
MAML and ProtoNet features in general. It intuitively makes sense because 1)
meta learners are trained with large enough data points and 2) it is likely that the
information in self-supervised features do not align with that in meta learners.

K Sequential Active-Meta Learning

Although iterative sampling is more common in active learning, we have focused
on sampling a context set at once because of the following two reasons.

First, even though we iterative label additional samples, the features do not
change in most of meta-learning algorithms except for MAML. Even for other
optimization-based methods such as ANIL, since the feature extractor is not
updated during adaptation on a context set, the features will stay the same
for iterative process of active learning. As we demonstrated with ProtoNet in
Fig. 7 (c)-(d) (details about experiments are below), although we iteratively add
more labeled samples, the performance does not change much as the features do
not change. In this case, selecting N ×K samples at once is not different from
iterative process while it is cheaper.

Furthermore, if we iteratively add labeled samples, it will quickly go beyond
few-shot regime in meta-learning, which is often not that practical in real world
settings. Suppose we have a meta learner trained in 5-way 1-Shot. It is reasonable
to add 5 samples per iteration since it is the minimum number to cover all the
classes. But only after 5 iterations, it will go few-shot regime where we typically
have 25 labeled context samples. It is even less practical for 5-Shot case.

Fig. 7 compare active learning methods for sequential setting where we se-
lect 5 context samples at a time until the budget reaches 25 samples. Every

30 W. Bae et al.

5 10 15 20 25
Number of Labeled Data

22
24
26
28
30
32
34
36
38

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(a) MAML: Train strat.

5 10 15 20 25
Number of Labeled Data

25

30

35

40

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(b) MAML: Unstrat.

5 10 15 20 25
Number of Labeled Data

34

36

38

40

42

44

46

48

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(c) Proto: Train strat.

5 10 15 20 25
Number of Labeled Data

32

34

36

38

40

42

44

46

A
cc

(%
)

Random

Entropy

Weighted Ent.

Margin

DPP

Coreset

Typiclust

ProbCover

GMM

(d) Proto: Unstrat.

Fig. 7: Test performance of MAML and ProtoNet on MiniImageNet with sequentially
actively selected context sets. 5 context samples are selected at each iteration until it
reaches 25.

5 10 15 20 25 30 35 40 45 50
Number of labeled data

15

20

25

30

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(a) CIFAR10

5 10 15 20 25 30 35 40
Number of labeled data

20

30

40

50

60

70

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(b) MNIST

5 10 15 20 25 30 35 40 45 50
Number of labeled data

8

10

12

14

16

18

A
cc

(%
)

ProbCover

GMM

Typiclust

Coreset

(c) SVHN

Fig. 8: Low-budget active learning methods on image classification with very low bud-
get. Mean and standard error of accuracy for three sets of SimCLR features, three runs
per features.

time we select new context samples we may utilize them to maximize new label
information. For MAML, we update all the model parameters through adapta-
tion steps. It is, however, not applicable to the other meta-learning methods we
use in this work including ProtoNet, since none of the other methods including
optimization-based methods such as ANIL, do not update the parameters up to
the penultimate layer.

As expected, the test performance of ProtoNet does not change much regard-
less of active learning methods. But, the test performance of MAML gradually
increases as we add more context samples. In sequential active-meta learning,
GMM still significantly outperforms other active learning methods.

L Fitting GMM using Expectation Maximization

In this section, we provide details about fitting GMM using the expectation
maximization (EM) algorithm. Although it is available in many literature, we
add it here for completeness of our method. The log-likelihood objective for a

Active Learning in Meta-Learning: Enhancing Context Set Labeling 31

GMM is given by,

ℓ(θ) =

N∑
i=1

log

(
K∑

k=1

πkN (xi|µk, Σk)

)
, (10)

where model parameters θ = {(πk, µk, Σk)}Kk=1 with Nand K being the number
of samples and mixture components, respectively.

EM algorithm is an iterative algorithm where we alternatively conduct E-step
and M-step as follows,

– E-step: we compute the posterior probability ωik that represents i-th data
point belongs to the k-th Gaussian component as,

wik =
πkN (xi|µk, Σk)∑K
j=1 πjN (xi|µj , Σj)

(11)

– M-step: we maximize the log-likelihood in terms of the model parameters.
Fortunately, for GMM, there are closed form solutions for each parameter.

πk =
1

N

N∑
i=1

wik, µk =

∑N
i=1 wikxi∑N
i=1 wik

, Σk =

∑N
i=1 wik(xi − µk)(xi − µk)

T∑N
i=1 wik

(12)

We repeat the E-step and M-step until convergence of the log-likelihood or for a
fixed number of iteration time. Please note that we use diagonal covariance Σk

since it is computationally efficient and often fits better in term of log-likelihood.

M Analysis on Low Budget Active Learning Methods

We briefly explain why each active learning method does not perform as well as
the proposed GMM method or even Random selection. In this section, we discuss
further on the inferiority of low budget active learning methods compared to
GMM. We conjecture it may be attributed to its implicit exploration of locally
dense regions or inappropriate measure of representativeness. Here we analyzed
potential reasons of their failure in very low budget regime.

– Typiclust: after conducting k-means, it selects samples for each cluster j,
based on

argmax
x∈clustj

 1

K

∑
xi∈KNN(x)

||x− xi||2

−1

where KNN denotes k-nearest neighbors of which size is fixed to 20. This
measure seeks for locally dense region by selecting samples that are close to
its nearest neighbors.

32 W. Bae et al.

– ProbCover: it greedily finds the maximally covering samples given a fixed
radius. This greedy algorithm provide (1− 1

e
)-approximation for the optimal

solution but the gap with the optimal solution can be quite large. Also, the
selection of the radius is hard as we discussed in Appendix G. When the
radius is small, it tries to find samples that are in locally dense regions.

– DPP: it finds samples of which a kernel matrix (with a pre-defined kernel
function) has the maximum determinant, which implicitly finds diverse sam-
ples. The determinant of a matrix, however, may not align with selecting
maximum covering (or representative) samples. In particular, maximizing
the determinant of the kernel matrix may lead to selecting samples far away
from other samples.

Compared to these methods, GMM tries to find globally representative samples
in non-greedy fashion (using expectation maximization). Also, its measure of
covering other samples is in Mahalanobis distance, which intuitively makes more
sense than the determinant of a kernel matrix as a measure. The proposed GMM
method is also theoretically motivated by the Corollary 1, which says a classifier
trained with the selected samples from GMM (cluster means) is a Bayes-optimal
classifier under certain conditions.

N Training-Time Active Learning

As mentioned in Sec. 5, we observe that active learn-
ing methods do not significantly change the gen-
eralization performance of meta learners when ap-
plied in meta-train time, which aligns with obser-
vations from [46,58]. To empirically demonstrate it,
we apply several active learning methods without
stratification in the meta-train time for ProtoNet on
MiniImageNet. Fig. 9 shows among Random, DPP
and GMM selections, one is not significantly bet-
ter than another although the Entropy selection is
significantly worse than them.

Fig. 9: Comparison of Picktrain
θ .

